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1. Introduction

An intriguing feature of string theory is the fact that one can have coincident D-branes.

The lowest-order action for such stacks of branes includes the Yang-Mills action for the

non-abelian gauge fields which arise when one takes the coincidence limit. Since the gauge

part of the action for a single D-brane is Born-Infeld one would expect that a non-abelian

generalisation of this action should be required in the case of coincident branes. Although

there has been a lot of work on this topic it is still not completely clear what this action

is and how it should incorporate invariance principles. It is the purpose of this note to

propose such an action for both the Dirac-Born-Infeld and the WZ terms which should be

present. The derivation we give is strictly speaking only valid in a certain approximation,

which we explain below, but we shall argue that it is not unreasonable to expect that it

can be extended beyond this.

Many features of the bosonic terms in the non-abelian action are known. Some years

ago, Tseytlin [1] put forward the proposal that the ordinary Born-Infeld action could be

generalised to the non-abelian case by using the same formula with an overall symmetrised

trace. Although this does not incorporate all the terms in the effective string action [2]

it is nevertheless a well-defined object to work with. Subsequently, starting from the

Tseytlin action, Myers derived a non-abelian Dirac-Born-Infeld action by demanding that

lower-dimensional brane actions be consistent with T-duality [3]. He also used T-duality

to derive a non-abelian Wess-Zumino term and showed that this has the property that

higher degree RR forms can couple to a Dp-brane giving rise to a dielectric effect. Similar

results were obtained from matrix theory [4, 5]. We shall show that Myers’s results can be
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understood from the point of view of invariance under diffeomorphisms of the brane and

gauge symmetries.

The Myers version of the DBI action was derived in the physical gauge where (p+1) of

the coordinates of the target space are identified with those of the brane and the transverse

coordinates are taken to be the scalar fields. These are then promoted to matrices in the

non-abelian theory. This procedure clearly breaks diffeomorphism symmetry for the brane.

Although non-abelian gauge invariance is maintained through the use of covariantised pull-

backs it is not at all obvious that the Myers action is invariant with respect to gauge

transformations of the background gauge fields. This is also true for the Wess-Zumino

term which involves the RR potentials as well as the B field. In fact, it is not clear what

the non-abelian generalisation of the modified field strength which appears in the action

for a single D-brane should be. A proposal for this was made in [6] in the supersymmetric

context and this is the one which we shall use here.

In this paper we shall derive non-abelian DBI and WZ actions in a formalism which

is inspired by the use of boundary fermions to describe non-abelian degrees of freedom in

open string theory [7 – 10]. We shall work in the approximation in which these fermions are

taken to be classical variables. Mathematically this amounts to extending the worldvolume

of the brane by a number of fermionic directions and replacing the brane embedding in

the target spacetime by a generalised embedding defined as a map from the extended

worldvolume to the target space [6]. Although the formalism is not a fully-fledged matrix

formalism, the results we derive can be compared to those in the literature if we replace

the Poisson bracket (in the fermionic part of the space) by the matrix commutator and

impose the symmetrised trace prescription. This approach can be justified to some extent

in the world-sheet picture. In the papers cited above it is shown how quantisation of the

fermions leads to the fermions being replaced by gamma matrices, so that functions of

them become matrices, and how correlation functions of products of operators involving

the fermions become the path-ordered trace of products of matrices. Since we are concerned

with operators at the same boundary point it is natural to adopt the prescription that the

path-ordered trace goes over to the symmetrised trace in this case. Moreover, it is canonical

practice to replace Poisson brackets by commutators in the quantisation procedure.

The DBI action we propose has a very simple structure. Since the extended space is

actually a superspace it is natural to replace the Born-Infeld determinant with a superde-

terminant. The matrix in this superdeterminant is the sum of the pull-back of the target

space metric and an abelian two-form field strength modified by the pull-back of the B-

field. The non-abelian gauge field emerges from the expansion of the abelian gauge field in

the fermionic coordinates. This action is manifestly invariant under diffeomorphisms and

gauge transformations and we show explicitly that it reproduces the Myers DBI action in

the physical gauge. Our WZ action looks very similar to the Myers WZ action. We show

that the couplings of the branes to scalar commutators can be motivated by diffeomorphism

invariance while the couplings to the higher rank RR forms are then required by RR gauge

symmetry. However, our formalism is not manifestly invariant and one has to work to prove

these results. Although the structure of our WZ action is very similar to Myers’s there is

a difference in that his involves contractions of forms with the scalar commutator whereas
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ours involves a similar contraction but in the fermionic directions. We show explicitly how

the terms collect together to gives the Myers result. Our conventions for differential forms

are given in the appendix.

2. The geometry of M̂ and the non-abelian gauge field

We shall be interested in a p-brane specified by an embedding f : M → M where M is the

worldvolume of the brane and M the target space, both spaces being bosonic. In order to

incorporate non-abelian degrees of freedom we extend the former to a superspace, M̂ , the

coordinates of which we denote by yM = (xm, ηµ). The coordinates of the target space are

denoted by xm. The embedding is replaced by a generalised embedding f̂ : M̂ → M . The

space M̂ is equipped with an abelian gauge field A such that the modified field strength

K := dA− f̂∗B , (2.1)

where B is the NS two-form potential on the target space, is invariant under gauge trans-

formations of both objects. It is furthermore assumed that Kµν is non-singular.

Following the ideas developed in [6] we use the field K to specify horizontal subspaces

in the tangent spaces of M̂ . If ω is a one-form on M̂ then we define its horizontal component

to be

ω̂m = ωm − Km
νων , (2.2)

where

Km
µ := KmνNνµ (2.3)

and

Nµν := (Kµν)−1 . (2.4)

We can view this as a change of basis if we also identify ω̂µ = ωµ. For a vector v we

have

v̂m = vm

v̂µ = vµ + vmKm
µ (2.5)

We define the horizontal component of K itself to be F ,

Fmn := Kmn − KmµNµνKνn . (2.6)

We note that K has no mixed components in the hatted basis. It is straightforward

to compute the transformation properties of various objects under diffeomorphisms. In

particular, we have

δKm
µ = v̂n(DnKm

µ −DmKn
µ) + v̂ν∂νKm

µ + Dmv̂µ − Nµν∂ν v̂
nFnm

δNµν = v̂mDmNµν + v̂ρ∂ρN
µν − 2Nρ(µ∂ρv̂

ν) + 2v̂mNρ(µ∂ρKm
ν) (2.7)

which implies that

δω̂m = v̂nDnω̂m + v̂ν∂νω̂m + Dmv̂nω̂n + Nµν∂ν v̂
nFnmω̂µ

δω̂µ = v̂nDnω̂µ + v̂ν∂νω̂µ + ∂µv̂nω̂n + ∂µv̂ν ω̂ν − v̂n∂µKn
νω̂ν . (2.8)
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The derivative Dm is defined by

Dm := ∂m − Km
µ∂µ . (2.9)

The transformation rule of ω̂m shows that this object is not preserved under general dif-

feomorphisms, only those for which ∂µv̂n = 0. Transformations which do not satisfy this

constraint are needed in order to reach the physical gauge where the generalised embedding

has the form

xm = (xm, xm′

(x, η)) . (2.10)

However, we do not want to make this gauge choice at this stage as the power of covariance

would be lost. Note that any object which has no mixed components in the hatted basis

will transform homogeneously under diffeomorphisms. This holds for Fmn.

We now turn to the emergence of a non-abelian gauge field from the abelian one we have

introduced. The requirement that Kµν be non-singular will be satisfied for any background

B if (dA)µν is non-singular. We can then use a vertical diffeomorphism to bring Aµ to the

standard form

Aµ =
1

2
ηµ . (2.11)

The transformations of A are

δAM = ∂Ma + vN (∂NAM − ∂NAN) + bM (2.12)

where a is the abelian gauge parameter and bM is the pull-back of the gauge parameter for

gauge transformations of the B field. As stated above we can use vµ to go to the standard

gauge for Aµ. The residual vertical diffeomorphisms are then given by

vµ = −δµν(∂νa + bν − vn∂νAn) (2.13)

We shall denote Am in the standard gauge by Am; it transforms as

δAm = ∂ma + (Am, a) + b̃m + vnFnm . (2.14)

where the Poisson bracket (, ) is defined by

(f, g) := δµν∂µf∂νg . (2.15)

Fmn := ∂mAn − ∂nAm + (Am, An) is the non-abelian field strength tensor, and b̃m denotes

the covariant pull-back of b with respect to the Yang-Mills derivative. This is given by

b̃m := Dmxmbm = (∂mxm + Am
µ∂µxm)bm , (2.16)

where

Am
µ := δµν∂νAm . (2.17)

The relation between the non-abelian field strength tensor and F , in the standard gauge,

is given by

Fmn = Fmn − B̃mn − B̃mµNµνB̃νn . (2.18)
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This formula may be taken as the definition of the appropriately modified non-abelian field

strength tensor in the presence of a B field.

For later use we note the relation between the hatted and tilded bases, valid in the

standard gauge. The fermionic components of a one-form ω are the same while

ω̂m = ω̃m + B̃mµNµνων . (2.19)

3. The DBIM action

In this section we present the Lagrangian for the DBIM action in the presence of the

additional fermionic variables. We set

LMN := gMN + KMN (3.1)

where gMN denotes the pull-back of the target-space metric to M̂ . The Lagrangian is then

simply

L =
√

−sdetLMN . (3.2)

This Lagrangian obviously transforms as a density under diffeomorphisms of M̂ and is

manifestly invariant under gauge transformations of both A and B. We shall now show

that it coincides with the Myers action [3] in the physical gauge provided that we interpret

functions of η as matrices, replace Poisson brackets by commutators and replace integration

over the fermionic variables with the symmetrised trace over all matrix factors.

The superdeterminant is

sdetLMN = det (Lmn − LmµLµνLνn)(det Lµν)
−1 , (3.3)

where Lµν := (Lµν)−1. If we introduce EMN := gMN − BMN , then

Lmn = Emn + (dA)mn (3.4)

while

Lµν = δµν + Eµν (3.5)

and

Lmµ = Emµ − Amµ (3.6)

in the standard gauge, Aµ = 1
2ηµ. We remind the reader that Amµ = ∂µAm.We therefore

have

Lmn − LmµLµνLνn = Emn + (dA)mn − (Emµ − Amµ)(δµν + Eµν)−1(Eνn + Anν) . (3.7)

We want to express this in terms of Fmn and replace the ordinary pull-back on m indices by

the covariant one defined by Dm = ∂m + Am
µ∂µ. After a straightforward piece of algebra

one indeed finds that

Lmn − LmµLµνLνn = Ẽmn + Fmn − Ẽmµ(δµν + Eµν)−1Ẽνn , (3.8)
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where

Ẽmn = DmxmDnxnEmn

Ẽmν = Dmxm∂νxnEmn . (3.9)

We shall now compute the second term on the r.h.s. of (3.8) in the physical gauge, xm =

(xm, xm′

(x, η)). In this gauge

Ẽmν = Dmxm∂νx
nEmn

= Dmxm∂νx
n′

Emn′

= ∂νxn′

(Emn′ + Am
µ∂µxm′

Em′n′)

= Ẽmn′∂νxn′

, (3.10)

while

Eµν = ∂µxm′

∂νxn′

Em′n′ . (3.11)

We therefore have

Ẽmµ(δµν + Eµν)
−1Ẽνn = Ẽmp′∂µxp′(δµν + Eµν)−1∂νx

q′Ẽq′n . (3.12)

Expanding out the inverse we find

∂µxp′(δµν + Eµν)−1∂νx
q′ = Mp′q′ − Mp′r′Er′s′M

s′q′ + . . . (3.13)

where

Mm′n′

:= δµν∂µxm′

∂νx
n′

= (xm′

, xn′

) . (3.14)

The series of terms is easily summed; the final result is

Lmn − LmµLµνLνn = Fmn + Ẽmn + Ẽmp′
(
(Q−1 − 1)E−1

)p′q′
Ẽq′n (3.15)

where

Qm′

n′ = δm′

n′ + Mm′p′Ep′n′ , (3.16)

and where E−1 denotes the inverse of Em′n′ .

In order to complete the picture we need to compute detLµν and show that it equals

det−1Q in the physical gauge. This is a straightforward exercise using the exp tr ln formula

for the determinant. For example, one has

δµνEµν = δµν∂µxm′

∂νx
n′

Em′n′

= Mm′n′

Em′n′

= −tr(ME) (3.17)

in the physical gauge. One therefore obtains

detLµν = exp(−tr ln(1 + ME)) = (det Q)−1 (3.18)

as required. So we indeed find that

√
−sdetLMN =

√
−det (Ẽmn + Fmn + Ẽmp′ [(Q−1 − 1)E−1]p

′q′Ẽq′n)det Q . (3.19)

It is quite remarkable that this expression agrees precisely with Myers’s result [3] provided

that one interprets it in the way we have suggested.
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4. The Wess-Zumino term

In [3] Myers gives an expression for the WZ term for a Dp-brane modified to the non-

abelian case. The most remarkable feature of this term is that p-branes can couple to

higher-degree RR potential forms. The mechanism for this is that one can lower the degree

of a pulled-back form by two by contracting a pair of transverse indices with Mm′n′

, which

is the commutator in Myers. In this way, for example, a five-form RR field can give rise to a

three-form and thus couple to a D2-brane. However, it is far from obvious that Myers’s WZ

term is gauge-invariant or invariant under diffeomorphisms of the brane. In this section

we construct a WZ term in our model which has these properties, although not manifestly.

Its structure is very similar to the Myers WZ term, although the match up of the terms is

not quite straightforward.

The Wess-Zumino term for a Dp-brane is

LWZ =
√

N

[
exp

(
− 1

2
iN

)
eF

∑
Ĉ

]

p+1,0

, (4.1)

where N := det Nµν . The subscript (p+1, 0) indicates that the (p+1, 0)-form component

is to be projected out, a (p, q)-form being a (p + q)-form on M̂ with even degree p and odd

degree q in the hatted basis. The RR potentials Ĉ are pulled back to M̂ with the hatted

pull-back, e.g.

Ĉmν = Dmxm∂νx
nCmn , (4.2)

where

Dm = ∂m − Km
µ∂µ. (4.3)

The point of using this pull-back rather than the one defined with the straightforward gauge

covariant derivative is that it is invariant with respect to the abelian gauge transformations

of both A and B. The operation iN appearing in (4.1) denotes the contraction of a form

with Nµν . Again this is invariant under gauge transformations of A and B. However, the

full expression is neither manifestly covariant under diffeomorphisms of M̂ nor under gauge

transformations of the RR fields.

First suppose that the WZ form for a Dp-brane, divided by
√

N , transforms in a regular

fashion, i.e. without a term involving ∂µv̂m, and let L be the dual of this form, then we

can take the Lagrangian, regarded as a function, to be LWZ =
√

NL, and we have

δL = (v̂mDm + v̂µ∂µ)L + Dmv̂mL (4.4)

while

δ
√

N = (v̂mDm + v̂µ∂µ)
√

N +
√

NKµν(v̂mNµρ∂ρKm
ν − Nµρ∂ρv̂

ν) . (4.5)

Combining these two results it is easy to see that

δ(
√

NL) = (−1)M∂M (vM (
√

NL)) . (4.6)

We therefore see that if L transforms regularly then LWZ will transform in the desired

fashion under diffeomorphisms of M̂ . The transformations of the pulled-back RR forms
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do include irregular terms and so the problem is to show that these all cancel between the

different terms in the action involving the same RR field but different powers of iN . In

fact, we can use this to argue that these terms must be present. As a simple example,

consider the C3 terms in the action for a D2-brane. If we focus on only the irregular parts

of the transformation of C3 we have

δĈmnp ∼ 3Nµν∂ν v̂qFq[mĈ|µ|np] (4.7)

Clearly we need to add something to the Lagrangian proportional to N to cancel this

variation. The obvious expression to try is iN ĈF , which involves the part of C with two

fermionic indices. Since F has no fermionic indices, this term involves Ĉµνp. The irregular

terms in the transformation of this field are

δĈµνp ∼ 2∂(µv̂qĈ|q|ν)p + Nρσ∂ρv̂
qFqpĈµνσ . (4.8)

The terms of interest in the transformation of iN ĈF are therefore

δ(Nµν Ĉµν[mFnp]) ∼ NµνNρσ∂ρv̂
qĈµνσFq[mFnp]

+2Nµν∂µv̂qĈqν[mFnp] . (4.9)

The first line on the r.h.s. vanishes as it involves F∧F in three dimensions, while the second

is equal to +2 multiplied by the r.h.s. of (4.7). Expanding out the exponential in (4.1) we

see that precisely the right coefficient is generated in order for these two terms to cancel.

The remaining terms can easily be seen to be the regular terms in the transformation of

the part of the D2-brane action which involves C3.

This line of reasoning can easily be extended to the general case. For a given brane, a

given RR field will appear in a sequence of terms with increasing powers of F and iN . It

is not difficult to verify that the irregular variations in a given term cancel against those

coming from the two adjacent terms. We can therefore conclude that the WZ term is

invariant up to a total derivative under abelian gauge transformations of A and B and

diffeomorphisms of M̂ . Since the non-abelian gauge transformations arise from the vertical

diffeomorphisms combined with the abelian gauge transformations of A in the standard

gauge we are therefore assured that the WZ term will be invariant under these.

The above considerations indicate the need for the iN terms but do not mix RR

forms of different rank. The full structure is required by demanding gauge invariance for

the background RR fields. Since the WZ Lagrangian is a sum of standard WZ terms of

different rank one might think that this is obvious but closer inspection shows that it is

not, because the iN operation does not commute with exterior differentiation.

The proof of gauge invariance is not difficult however. We shall focus on the IIA case

for simplicity. The gauge transformations of a (p + 1)-form potential is

δCp+1 = dΛp − Λp−2H (4.10)

where H is the NS three-form, and Λ is used to denote the gauge parameters. Pulled back

to M̂ , H becomes −dK. So the gauge transformation of the WZ form is

δLWZ =
√

N
[
e−

1

2
iN

∑
(d(Λ̂eF ) + dN−1Λ̂eF )

]
p+1,0

, (4.11)
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where

N−1 := K −F (4.12)

Now F is horizontal and is not acted on by iN . It therefore plays no essential rôle in

the proof that this expression gives rise to a total derivative. From this point of view it

may as well be absorbed into the parameters Λ; that is, we regard ΛeF as the redefined Λ.

Each Λ appears in pairs of terms which have the same degree. A general pair of terms in

(4.11) has the form
(
− 1

2

)n√
N

(
inN (dΛ̂)p+1,2n − 1

2n + 2
in+1
N (dN−1Λ̂)p+1,2n+2

)
. (4.13)

This gives the contribution of a (2n + p)-form Λ̂. We shall now show that this expression

can indeed be written as a total derivative. The above formula suggests that it should be

something like d(
√

NinN Λ̂) and we shall see that this is not far off the mark.

Let us introduce the notation Nµ1...µ2n to denote the symmetrised product of n Ns.

The first term in (4.13), ignoring the overall factor and the square root, is

Nµ1...µ2n(dΛ̂)m1...mp+1µ1...µ2n = Nµ1...µ2n

(
(p+1)Dm1

Λ̂m2...mp+1µ1...µ2n−2n∂µ1
Λ̂m1...mp+1µ2...µ2n

−p(p + 1)Dm1
Km2

ρΛ̂m3...mp+1µ2...µ2nρ

−2n(p + 1)∂µ1
Km1

ρΛ̂m2...mp+1µ2...µ2nρ

)
, (4.14)

where antisymmetrisation over the free even indices is understood here and in the rest of

the proof. The terms involving the derivatives of K arise because we are working in the

horizontal lift basis. The second term in (4.13), again omitting the numerical factors and

the square root, is

Nµ1...µ2n+2(dN−1)[m1m2m3
Λ̂m4...mp+1µ1...µ2n+2]

= Nµ1...µ2n+2

((2n + 2)p(p + 1)

2
(dN−1)m1m2µ1

Λ̂m3...mp+1µ2...µ2n+2

+
(2n + 2)!(p + 1)

2(2n)!
(dN−1)m1µ1µ2

Λ̂m2...mp+1µ3...µ2n+2

+
(2n + 2)!

3!(2n − 1)!
(dN−1)µ1µ2µ3

Λ̂m1...mp+1µ4...µ2n+2

)
. (4.15)

The exterior derivative of N−1 has the following non-trivial components

(dN−1)m1m2µ = 2D[m1
Km2]

ρKρµ

(dN−1)m1µ2µ3
= Dm1

Kµ2µ3
− 2∂(µ2

K|m1

ρKρ|µ3)

(dN−1)µ1µ2µ3
= 3∂(µ1

Kµ2µ3) . (4.16)

We can group together like terms from the two original terms in (4.13) taking into account

the relative numerical factor. It is easy to see that the terms involving DmKn
ρ cancel.

Reinstating the square root of detN we see that the other terms with the derivative Dm

can be written in the form

(p + 1)Dm1
(
√

NNµ1...µ2nΛ̂m2...mp+1µ1...µ2n) . (4.17)
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Next we consider the terms involving ∂µKm
ρ. The term of this sort in (4.14) is cancelled

by one of the terms in (4.15) and we are left with

(p + 1)
√

NNµ1...µ2n∂ρKm1

ρΛ̂m2...mp+1µ1...µ2n (4.18)

The two expressions (4.17) and (4.18) combine to give

(p + 1)∂m1
(
√

N(inN Λ̂)m2...mp+1
) + (p + 1)∂µ(

√
NKm1

µ(inN Λ̂)m2...mp+1
) . (4.19)

Finally, we consider the terms involving the fermionic derivative of Λ̂ and N . After a short

piece of algebra, and using the fact that Nµν is the inverse of Kµν , one verifies that these

give

−2n∂µ1
(
√

NNµ1...µ2nΛ̂m1...mp+1µ2...µ2n) . (4.20)

To conclude the proof, we can contract the above expressions, (4.19) and (4.20), with

εm1...mp+1 to obtain total derivatives. We therefore conclude that the WZ term is indeed

invariant, up to a divergence in M̂ , under gauge transformations of the background RR

potentials.

5. Comparison of WZ terms

The structure of our WZ term is clearly very similar to that of Myers’s, but the way in which

the various terms match up is not obvious since our inner product operation iN involves

the extra fermionic directions while Myers’s involves the directions transverse to the brane

in spacetime. In this section we shall prove that the two expressions agree precisely in the

static gauge, given that we interpret our results as before.

The WZ term for a p-brane is

LWZ =
√

N
[
e−

1

2
iN eF

∑
Ĉ

]
p+1,0

(5.1)

F is a (2, 0)-form which can be written, in the standard gauge (2.18), as1

F2,0 = F2,0 − B̃2,0 − b2,0 , (5.2)

where

bmn := B̃mµNµνB̃νn . (5.3)

The first two terms in F are very similar in our expression and in Myers’s; since they

are not seen by the iN operation they can be absorbed into the RR potentials. With this

understanding we can write the contribution of a (p + 1 + 2n)-form potential to the WZ

term as

LWZ ∼
√

N
[
e−

1

2
iN e−b2,0Ĉp+1+2n

]

p+1,0

=
√

N
[
e−

1

2
iN

(
Ĉp+1,2n − b2,0Ĉp−1,2n+2 + . . .

)]

p+1,0
. (5.4)

1Throughout this section forms are written in the hatted basis (em = dxm, beµ = dηµ +dxmKm
µ). Tildes

refer to the components, e.g. eB1,1 = beµem eBmµ.
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We shall prove the equivalence between this expression and the corresponding Myers term

in steps. First we show that, in the standard gauge,

[
e−

1

2
iN e−b2,0Ĉp+1+2n

]
p+1,0

=
[
e−

1

2
iN e−

eB1,1C̃p+1+2n

]
p+1,0

, (5.5)

where B̃1,1 has components B̃mµ. In order to prove this result we shall need to express Ĉ

in terms of C̃, the Yang-Mills pulled-back potential. It is straightforward to see that

Ĉp+1,2n =

q=p+1∑

q=0

1

q!
(B̃1

1)qC̃p+1−q,2n+q , (5.6)

where B̃1
1 denotes the vector-valued one-form with components B̃mνNνµ := B̃m

µ.

We begin by looking at the terms with no b-field contributions. The term with q powers

of B̃ on the l.h.s. of (5.5) is

(
− 1

2

)n
inN
q!n!

(B̃1
1)qC̃p+1−q,2n+q , (5.7)

whereas the r.h.s. contribution comes from the term

(
− 1

2

)n+q (−1)qin+q
N

q!(n + q)!
B̃

q
1,1C̃p+1−q,2n+q (5.8)

Now

[B̃q
1,1C̃p+1−q,2n+q]m1...mp+1,µ1...µ2nν1...νqρ1...ρq = εq(−1)q(p+1−q) (p + 1)!(2n + 2q)!

(p + 1 − q)!(2n + q)!
×

× B̃[m1(ν1
. . . B̃mqνq C̃mq+1...mp+1]µ1...µ2nρ1...ρq)

(5.9)

where

εq := (−1)
1

2
q(q−1) . (5.10)

In (5.8) the expression in (5.9) is to be contracted with (n + q) powers of N . We can

compute this by switching the symmetrisation brackets on the fermionic indices to Nn+q.

To find the term with no b we then have to isolate the term in this expression of the form

Nµ1...µ2nNν1ρ1 . . . Nνqρq . The result is

εq

(
− 1

2

)n
inN (p + 1)!

n!q!(p + 1 − q)!
B̃[m1

ν1 . . . B̃mq

νqC̃mq+1...mp+1]µ1...µ2nν1...νq
, (5.11)

and this is exactly equal to the component form of (5.7).

Now consider the terms with q powers of B̃ including br, where q ≥ 2r. The l.h.s. of

(5.5) gives

(
− 1

2

)n+r 1

(q − 2r)!

in+r
N

(n + r)!

(−1)rbr

r!
(B̃1

1)q−2rC̃p+1−q,2n+q , (5.12)
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We have to compare this with the br term in (5.8). Using the fact that iN (B̃1,1)
2 = 4b, we

find that this contribution to (5.8) is

4rnr,q,n

(
− 1

2

)n+q (−1)q

q!

i
n+q−r
N

(n + q)!
br B̃

q−2r
1,1 C̃p+1−q,2n+q , (5.13)

where it is understood that the remaining contractions do not give any more factors of b.

The combinatoric factor nr,q,n is given by

nr,q,n =
q!(n + q)!

2rr!(q − 2r)!(n + q − r)!
. (5.14)

Using this in (5.13) and the previous result for no b terms one can easily verify that the

l.h.s. and r.h.s. terms with br in (5.5) are indeed equal.

The second step is to show that
√

N
[
e−

1

2
iN ωq,2n

]
q,0

=
[
e−

1

2
iδe−B0,2ωq,2n

]
q,0

(5.15)

where iδ means contraction with δµν instead of Nµν . The even part of the form ω does not

play an essential rôle here, so we can take q = 0. In this case the l.h.s. of (5.15) is

√
N

(−1
2 )n

n!
inNω =

√
N

(
− 1

2

)n 1

n!

∑

{k}

ω(Bk1, . . . , Bkn) , (5.16)

where, on the r.h.s. , ω is regarded as a symmetric n-linear map of symmetric matrices,

B(= B0,2) is regarded as a symmetric matrix, (k1, . . . kn) is an n-tuple of non-negative

integers, and the sum is over all such n-tuples. Bki denotes the kith power of B as a

matrix, with (B0)µν = δµν . On the other hand, the r.h.s. of (5.15) is

∑

m

(−1)m
(
− 1

2

)n+m in+m
δ (Bm

0,2ω)

(n + m)!m!
. (5.17)

Now

ιn+m
δ (Bm

0,2ω) =
m∑

{k}

2k(n + m)!m!

n!(m − k)!(m − k)!
ω(Bk1, . . . , Bkn)ιm−k

δ Bm−k
0,2 , (5.18)

where k =
∑n

i=1 ki, and where the sum runs over all n-tuples such that k ≤ m. Thus the

r.h.s. of (5.15) is

∑

m,{k}

(
− 1

2

)n 1

2m−k[(m − k)!]2
ω(Bk1 , . . . , Bkn)ιm−k

δ Bm−k
0,2 . (5.19)

If we set p = m − k we find that this is equal to
(

∑

p

1

2p

i
p
δB

p
0,2

(p!)2

)
∑

{k}

(
− 1

2

)n 1

n!
ω(Bk1, . . . , Bkn) = (5.20)

[
e−

1

2
iδe−B0,2

]
0,0

∑

{k}

(
− 1

2

)n 1

n!
ω(Bk1 , . . . , Bkn) .
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It is not difficult to show that the factor in square brackets on the r.h.s. of this equation is

the square root of the determinant,

√
N =

[
e−

1

2
iδe−

eB0,2

]
0,0

. (5.21)

The use of this in (5.21) establishes (5.15).2 Finally, in the physical gauge,

(inδ )ωp,2n = (−iM )nωp,2n (5.22)

for any pulled-back form ωp,2n, where, on the right, ωp,2n is a (p + 2n)-form on the brane

tangential degree p and normal degree 2n. This is easy to see: suppose we have a (0, 2)-

form, ω0,2, then

iδω0,2 = δµνωµν

= δµν∂µxm′

∂νx
n′

ωm′n′

= Mm′n′

ωm′n′ = −iMω . (5.23)

The proof can easily be extended to the general case. Combining all of these steps, and

reinstating F we finally arrive at

√
N

[
e−

1

2
iN eF

∑
Ĉ

]
p+1,0

=
√

N
[
e−

1

2
iN eF− eB2,0e−

eB1,1

∑
C̃

]
p+1,0

=
[
e−

1

2
iδeF− eB2,0− eB1,1− eB0,2

∑
C̃

]
p+1,0

=
[
e

1

2
iM eF− eB

∑
C̃

]
p+1,0

(5.24)

The final expression is the Myers WZ term which is only defined in the physical gauge. In

the Myers term B̃ is the gauge-covariant pull-back of B. The equality between our WZ

term and Myers’s is to be interpreted in the same manner as for the DBIM part of the

action.

6. Discussion

In this article we have argued that the action proposed by Myers for coincident D-branes

in the physical gauge can be derived from a completely covariant formalism which makes

use of boundary fermions. In order to make the final step from our results to Myers’s

we have to replace functions of η by matrices and replace integration over the fermionic

variables by the symmetrised trace over matrices. This is quite natural as the boundary

fermions have to be quantised when they are used to describe the Chan-Paton factors for

the open string. In the standard gauge canonical quantisation leads to ηµ being replaced

by γµ, so that functions of fermions naturally give rise to matrices. The path integral over

the boundary fermions is designed to reproduce the path-ordered trace; if the integrand is

local as a function of the parameter specifying the boundary of the string it is natural to

2There is no difference between eB0,2 and B0,2
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interpret this as the symmetrised trace. It would nevertheless be preferable to justify this

prescription in more detail from the worldsheet point of view, a topic we hope to report

on in the future.

The main feature of our result is that the Myers action can be viewed as a gauge-

fixed version of an action which is covariant under all the local symmetries. Although

one would have expected this to be the case, it was not at all clear how the Myers action

could be made compatible with these. Since the Myers action is defined in the physical

gauge diffeomorphism invariance could not have been present, but invariance under gauge

transformations of the background potentials was also rather obscure.

In [6] we used the boundary fermion formalism in the context of the open Green-

Schwarz string to derive the equations of motion for a set of coincident supersymmetric

branes in the classical limit, i.e. taking the fermions to be classical. Given the results of

the present paper these equations should be equivalent to those one would derive from a

supersymmetrisation of Myers’s action. However, it is not easy to make the comparison

because the Myers formalism is most suited to the action whereas the formalism of [6] leads

naturally to equations of motion. It is not so easy to relate the two in such a complicated

theory.

In [6] we used a supersymmetric extension of the formalism employed here, in the sense

that the brane and the target space were taken to be superspaces, and in that context

we also developed a manifestly covariant formalism. We then attempted to construct a

covariant action form by generalising the construction of brane actions [11, 12] in the

superembedding formalism [13, 14]. Although the details of this were not fully worked

out the results derived in the present paper suggest that they could be. If so, this could

be a much quicker and more transparent way of establishing covariance. A related topic,

currently under investigation, is the construction of a kappa-symmetric Green-Schwarz

action for coincident D-branes. It would also be interesting to compare the current approach

with that of [15] where only a single kappa-symmetry is employed.

In conclusion, the current work suggests that the boundary fermion formalism could be

very useful for discussing non-commutative aspects of coincident D-branes. Clearly further

work needs to be done to put this approach on firmer ground. It would be interesting to see

how it can be related to the work of various other groups, for example, on covariance, [16 –

19], on higher-order terms via stable bundles [20], and on supersymmetry [21 – 25].

A. Conventions

We briefly summarise our conventions for differential forms. We use superspace conven-

tions. A p-form ω on M̂ is written

ω =
1

p!
eMp . . . eM1ωM1...Mp

:=
1

p!
eMp...M1ωM1...Mp (A.1)
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where eM is a set of basis one-forms. The components of ω are defined to be ωM1...Mp . The

wedge product of two forms ω, ρ, both with even overall Grassmann parity, is

(ω ∧ ρ)M1...Mp+q =
(p + q)!

p!q!
ρ[M1...Mq

ωMq+1...Mp+q] . (A.2)

The exterior derivative acts from the right by

dω =
1

(p + 1)!
eMp+1...M1((p + 1)dM1

ωM2...Mp+1
− 1

2
p(p + 1)fM1M2

NωNM3...Mp+1
) , (A.3)

where dM denotes the vector fields dual to eM and

[dM , dN ] = fMN
P dP . (A.4)

We have

d(ω ∧ ρ) = ω ∧ dρ + (−1)qdω ∧ ρ , (A.5)

where ρ is a q-form.

A vector-valued k-form,

L =
1

k!
eMk...M1LM1...Mk

NdN , (A.6)

acts as a derivation of degree k − 1 on forms by ω → Lω where

Lω :=
1

(k + p − 1)!
eMk+p−1...M1

(k + p − 1)!

k!(p − 1)!
LM1...Mk

NωNMk+1...Mk+p−1
. (A.7)

If L is a vector, i.e. k = 0, this formula reduces to the interior product of a vector with a

p-form.

A (p, q)-form with respect to some splitting of the basis set into even and odd, eM =

(em, eµ), is written

ω =
1

p!q!
eµq ...µ1emp...m1ωm1...mpµ1...µq . (A.8)

The operation iN , where N = Nµνdν ⊗ dµ, is defined by

iNω =
1

p!(q − 2)!
eµq ...µ3emp...m1Nµ2µ1ωm1...mpµ1...µq . (A.9)

If L is a vector-valued one-form of the form L = emLm
µdµ then

Lω =
1

(p + 1)!(q − 1)!
eµq ...µ2emp+1...m1(−1)p(p + 1)Lm1

µ1ωm2...mp+1µ1...µq . (A.10)

The sign (−1)p is explained as follows. L can be viewed as a one-form which starts acting

from the right. It therefore has to be taken past p ems to act on eµ1 . This where the sign

comes from. It also acts on the other odd basis forms giving a factor of q. In the text we

have used this operation with L = B̃1
1.
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